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1 Fourier Concentration of DNFs

1.1 Recap: DNFs and random restrictions

Recall that a DNF looks like

(xi1 ∧ xi2 ∧ · · · ∧ xiw) ∨ (xj1 ∧ · · · ) ∨ · · · ,

where the width is the maximum number of literals per term and the size is the number
of terms. Last time, we proved the following proposition.

Proposition 1.1. Suppose f is computable by a width w DNF. Then I(f) ≤ 2w.

The connection between size and width is given by the fact that every size s DNF is
ε-close to a width log(s/ε) DNF.

Our goal is to prove Mansour’s theorem.

Theorem 1.1 (Mansour). Width w DNFs are ε-concentrated on at most wO(w log(1/ε))

coefficients. All these coefficients are up to degree O(w log(1/ε)).

We will prove it next time. Today, we will prove an important ingredient, the LMN
lemma.

Lemma 1.1 (LMN). Width w DNFs are ε-concentrated up to degree O(w log(1/ε)).

To prove Mansour’s theorem, we introduced the method of random restrictions: Instead
of analyzing f : {±1}N → {±1} directly, consider the rest of f for variables J ⊆ [n] by

assigning J with z ∈ {±1}J . This gives fJ,z : {±1}J → {±1} with

fJ,z(y) = f( y︸︷︷︸
J

, z︸︷︷︸
J

).

We also think of this function as fJ,z : {±1}J → {±1} as

fJ,z(x) = f(xJ , z).
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We considered p-random restrictions with the distribution Rp given by picking each

i ∈ [n] to be in J independently with probability p and picking z ∈ {±1}J uniformly at
random.

We proved the following facts about the Fourier coefficients of random restrictions.

Lemma 1.2. For 0 < p < 1 and S ⊆ [n],

E(J,Z)∼Rp
[f̂J,Z(S)] = f̂(S)p|S|,

E(J,Z)∼Rp
[f̂J,Z(S)2] =

∑
U⊆[n]

f̂(U)2PJ(U ∩ J = S) =
∑
U⊇S

f̂(U)2p|S|(1− p)|U\S|.

1.2 Influence of DNFs

Let’s give another interpretation of this last equality. Recall that Sf denotes the Fourier
distribution of f :

P(U) = f̂(U)2.

Then Sf,p is the distribution over the set S ⊆ [n] given by

P(S) = E(J,Z)∼Rp
[f̂J,Z(S)2].

We can obtain the distribution Sf,p by the following steps:

1. Sample U ∼ Sf

2. Sample J ⊆p [n] (each i ∈ J independently with probability p).

3. Output U ∩ J .

Now recall the weight

W k(f) =
∑

U⊆[n],
|U |=k

f̂(U)2.

The weight of the parity function looks like
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The expected weight under a random restriction will behave like a Binomial(n, p) distri-
bution

In general, the Fourier spectrum will look like an average, over the original weights, of
binomials with parameters (k, p).

Theorem 1.2. If f is a size s DNF, then I(f) ≤ O(logS).

Lemma 1.3.
E(J,Z)∼Rp

[I(fJ,Z)] = pI(f).

Proof.

E(J,Z)∼Rp
[I(fJ,Z)] = EJ,Z

∑
S⊆[n]

|S| · f̂J,Z(S)2


=
∑
S⊆[n]

|S|EJ,Z f̂J,Z(S)2]

=
∑
S⊆[n]

|S|
∑
U⊆[n]

f̂(U)2 · PJ(J ∩ U = S)

=
∑
U⊆[n]

f̂(U)2
∑
S⊆[n]

|S| · PJ(J ∩ U = S)

=
∑
U⊆[n]

f̂(U)2 EJ [|J ∩ U |]

=
∑
U⊆[n]

f̂(U)2 · p · |U |

= p · I(f).
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Remark 1.1. Another way to think of this proof is via the distribution Sf,p:

ES∼Sf,p
[|S|] = EU∼Sf ,

J⊆p[n]

[|U ∩ J |] = EU∼Sf
[p · |U |] = pI(f).

Now we want to understand the width of a restriction.

Lemma 1.4. If (J, Z) ∼ R1/2 and f is a size s DNF, then for all w,

P(width(fJ,Z) ≥ w) ≤ s ·
(

3

4

)w

.

Proof. Write
f = T1 ∨ T2 ∨ T3 ∨ · · · ∨ Ts,

where s is the size of the DNF and each Ti is an AND of literals. By a union bound, it
suffices to show that for each term Ti,

P(width((Ti)J,z) ≥ w) ≤
(

3

4

)w

.

If width(Ti < w), this is true automatically. If width(Ti) ≥ w, then express

Ti = (xi1 ∧ xi2 ∧ · · · ∧ xiw′ ),

where w′ ≥ w. For (Ti)J,Z to not equal False, all literals must be either alive or assigned
true. So

P((Ti)J,Z 6≡ False) =

(
3

4

)w′

≤
(

3

4

)w

.

Since width(fJ,Z) ≥ w implies that (Ti)J,Z 6≡ False, we get the bound.

Now we will use all these tools to prove the theorem:

Proof. Pick p = 1/2. Then

I(f) =
1

1/2
E(J,Z)∼R1/2

[I(fJ,Z)]

≤ 2EJ,Z∼R1/2
[width(fJ,Z)]

= 2
∞∑

w=1

P(width(fJ,Z) ≥ w)

≤ 2

 ∑
w≤3 log s

1 +
∑

w≥3 log s
s

(
3

4

)w


≤ 6 log s + 2s

(
3

4

)3 log s

· 4

≤ 6 log s + o(1).
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1.3 The H̊astad switching lemma and the LMN lemma

We can reduce the dependence on the size s with the following remarkable lemma.

Lemma 1.5 (H̊astad switching lemma). Suppose f : {±1}n → {±1} is computable by a
width w DNF, nd let (J, Z) ∼ Rp. Then for any k,

PJ,Z(decision tree depth(fJ,Z) ≥ k) = (5pw)k.

Think of p as being something like 1/(10w). This lemma says that DNFs with very
high probability can be represented by a shallow decision tree. For p = 1/(10w) and k = 1,
we get that with probability 1/2, the DNF becomes a constant function! We will prove the
switching lemma next time. For now, we want to prove the lemma of LMN.

Claim 1: For all k,
E(J,Z)∼Rp

[W≥k(fJ,Z)] ≤ (5pw)k.

Claim 2: For all k, p,

W≥dk/pe(f) ≤ 2E(J,Z)∼Rp
[W≥k(fJ,Z)].

Assuming both claims, here is how we prove the LMN lemma:

Proof of LMN lemma. Pick p = 1/(10w). Then for all k,

W≥k·10w(f) ≤ 2 · (spw)k ≤ 2

(
1

2

)k

.

Now pick k = log(2/ε) to get W≥10wk(f) ≤ ε.

Now we prove Claim 1:

Proof of Claim 1.

E(J,Z)∼Rp
[W≥k(fJ,Z)]

= E(J,Z)∼Rp
[W≥k(fJ,Z) | DT depth(fJ,Z) ≥ k] · P(DT depth(fJ,Z) ≥ k)

+ E(J,Z)∼Rp
[W≥k(fJ,Z) | DT depth(fJ,Z) < k]︸ ︷︷ ︸

=0

·P(DT depth(fJ,Z) < k)

≤ 1 · P(DT depth(fJ,Z) ≥ k)

Since this is a DNF, we can use H̊astad’s switching lemma.

≤ (5pw)k.

Finally, we prove Claim 2:
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Proof of Claim 2.

E(J,Z)∼Rp
[W≥k(fJ,Z)] =

∑
U⊆[n]

f̂(U)2P(|U ∩ J | ≥ k)

The random variable |U ∩ J | has Bin(|U |, p) distribution

=
∑
U⊆[n]

f̂(U)2P(Bin(|U |, p) ≥ k)

For this to be a small event, we want |U |p ≥ k.

≥
∑
|U |≥k/p

f̂(U)2 P(Bin(|U |, p) ≥ k)︸ ︷︷ ︸
≥1/2

=
1

2
W≥k/p(f).

Mansour’s theorem tells us that even within the lower levels, the Fourier spectrum is
concentrated on relatively few coefficients. Generally, any boolean function with behavior
according to the LMN lemma will actually also have behavior according to Mansour’s
theorem.
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